Ensemble statistics and attentional selection
نویسندگان
چکیده
منابع مشابه
MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection
Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...
متن کاملEnsemble Classification and Extended Feature Selection for Credit Card Fraud Detection
Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...
متن کاملAdaptive Cluster Ensemble Selection
Cluster ensembles generate a large number of different clustering solutions and combine them into a more robust and accurate consensus clustering. On forming the ensembles, the literature has suggested that higher diversity among ensemble members produces higher performance gain. In contrast, some studies also indicated that medium diversity leads to the best performing ensembles. Such contradi...
متن کاملCluster Ensemble Selection
This paper studies the ensemble selection problem for unsupervised learning. Given a large library of different clustering solutions, our goal is to select a subset of solutions to form a smaller but better performing cluster ensemble than using all available solutions. We design our ensemble selection methods based on quality and diversity, the two factors that have been shown to influence clu...
متن کاملBagging Ensemble Selection
Ensemble selection has recently appeared as a popular ensemble learning method, not only because its implementation is fairly straightforward, but also due to its excellent predictive performance on practical problems. The method has been highlighted in winning solutions of many data mining competitions, such as the Netflix competition, the KDD Cup 2009 and 2010, the UCSD FICO contest 2010, and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Vision
سال: 2012
ISSN: 1534-7362
DOI: 10.1167/12.9.562